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Abstract. Expanding on earlier work, it is shown how to rewrite the non-relativistic problem of
two particles coupled by a spring as one higher-order one-particle (HOOP) problem, which then
can be elevated to be Lorentz covariant. The higher-order Lagrangian is then developed into an
Ostrogradsky Hamiltonian format, from which canonical commutation rules are invoked and a
relativistic wave equation produced. Within the centre-of-momentum frame of reference, the latter
is reduced to a radial Schrödinger equation that is solved numerically, with a display of radial
eigenfunctions that are compared with non-relativistic ones. The details of this example illustrate
conclusively how the HOOP approach to direct-interaction many-particle relativistic dynamics
works.

1. Introduction

The theory of directly interacting relativistic particles has defied adequate exposition for half
a century, notwithstanding strong efforts to elaborate upon it. The subject is reviewed in
several monographs and papers [1, 2]. Its attractiveness is that it attempts to broach relativistic
interaction quite directly, in a finite and non-perturbative physical set-up referring only to the
orbits of particles, without the infinities of mediating fields. The difficulty since the beginning
has been the zero-interaction theorem (ZIT) of Currie et al [3] which states that if the physical
coordinates of particles running on invariant worldlines are taken as canonical coordinates in
a Hamiltonian dynamics, while the Poincaré group is canonically represented, then the only
possible orbits are those for free non-interacting particles.

In this paper a previously devised scheme [4] is worked out in detail for overcoming the
ZIT, using the primitive example of a pair of particles hooked together by an ideal spring (in
the non-relativistic limit) and carried through to a complete quantum-mechanical elaboration.

The idea is very simple. What drives the ZIT is the non-covariance of simultaneity in
special relativity, as depicted in figure 1 where the schematic worldlines of a pair of interacting
particles are shown with respect to a frame x, ct and a boosted frame x ′, ct ′. The shift to new
simultaneity from B to B ′ along the worldline of particle 2 produces, infinitesimally, a shift in
the actionL(x1x2ẋ1ẋ2) dt which, if it is to be at most an exact differential that secures the boost
to be canonically represented, drives L into the form of a sum of free-particle Lagrangians,
one for each particle, with no coupling between them.

In fact figure 1 contains a significant redundancy in the following sense: if the two
equations of motion for x1(t) and x2(t) are decoupled, giving one single equation of motion,
say for x1(t) alone, of fourth order, than the worldline of particle 1 alone may be plotted as in
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Figure 1. Non-covariance of simultaneity in many-
particle dynamics, requiring a shift from B to B′ under
a boost.

Figure 2. With the motion of particle 2 eliminated
according to HOOP, just the orbit of particle 1 alone
suffices in one higher-order differential equation to span
the two-particle dynamics. The boost now requires
no shift along a worldline, but merely a kinematical
redesignation of one and the same worldpoint as A in
(x, ct) or A′ in (x′, ct ′).

figure 2 and spans perfectly the entire physical situation of an interacting pair of particles, no
more and no less. This means that a complete and completely self-referential description of
one worldline, bought at the cost of an elevation of differential order, suffices fully to describe
many-particle dynamics.

This higher-order one-particle (HOOP) representation of dynamics has, in itself, nothing
to do with relativity, but merely states that a pair of second-order equations of motion in two
variables is equivalent to one fourth-order equation in one of them. The argument extends in
principle to the n-particle problem,

r̈i = fi(r1, r2, . . . , rn, ṙ1ṙ2, . . . , ṙn) i = 1, 2, . . . , n

where, by an ancient prescription, repeated differentiation of one equation of motion say
r̈1 = F1 and elimination of r2, r3, . . . , rn, ṙ2ṙ3, . . . , ṙn eventually brings

r
(2n)
1 = F(r1, ṙ1, . . . , r

(2n−1)
1 ).

Thus, for example, in the two-particle problem one must invert r̈1 and ˙̇ṙ1 as functions of
r1, ṙ1, r2, ṙ2 to give r2 and ṙ2 as functions of r1, ṙ1, r̈1, ˙̇ṙ1, which may be difficult technically.
However, it is readily executed for a considerable family of central forces [4].

The crucial point specifically regarding relativity is now that the troublesome shift to
new simultaneity under a boost (like B to B′ in figure 1) is eliminated in favour of a
pointwise redescription of the single orbit without shifting along the worldline, and the
description of the single orbit may then be made manifestly Lorentz covariant without
difficulty.

A procedure, long sought, which elevates via HOOP a Galilean covariant dynamics into a
Poincaré covariant dynamics using the two-particle case initially in r1 and r2, as a prototype is
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the following. Firstly, working non-relativistically from the Newtonian equations of motion,
decouple them by computing ˙̇ṙ1 and r

(4)
1 from r̈1 and eliminating r2 and ṙ2 to obtain one

fourth-order equation in r1, with all reference to particle 2 entirely removed. The Galilean
covariance of the starting pair will be carried over into Galilean covariance of the single fourth-
order HOOP equation of motion for particle 1. Secondly, develop a higher-order Lagrangian
L0—in r1, ṙ1, r̈1—for fourth-order HOOP, producing its Euler–Lagrange equation of motion
as follows:

∂L0

∂r1
− d

dt

∂L0

∂ ṙ1
+

d2

dt2
∂L0

∂ r̈1
= 0.

This will ordinarily be feasible if the starting pair itself possessed a Lagrangian. Thirdly
and critically, step up the action L0 dt into a Lorentz scalar L dτ by introducing the proper
time interval dτ and suitable Lorentz scalars like aµaµ (where aµ denotes 4-acceleration) to
generalize the Newtonian squared-acceleration a2, in such a way as to recover the Newtonian
actionL0 dt in a the non-relativistic limit. This elevation from Galilean covariance to Poincaré
covariance is not necessarily unique since there are many ways to reach one and the same non-
relativistic limit (simplicity and convenience being the first considerations, though eventually
it may be desirable to explore a range of possibilities).

In this way the non-relativistic HOOP equation of motion is generalized into a relativistic
HOOP, with a full panoply of ten conservation laws going with the tenfold Poincaré symmetry.
The final stage is to convert the relativistic HOOP into Hamiltonian form, employing the classic
scheme of Ostrogradsky [5], and then into quantum theory via canonical commutation rules. A
novel feature of Hamiltonian HOOP, whether relativistic or non-relativistic, is the occurrence
of both position and velocity of the single particle as generalized coordinates, with conjugate
momenta for each, instead of the (ZIT untenable) coordinates and momenta for the original
individual two particles.

It may be noticed that Gaida et al [6] have considered relativistic Lagrangians for a
system or many particles based on all of the particle coordinates and their time derivatives.
Their finding is that for interacting particles derivatives of all orders, up to infinite orders, must
be included. In contrast, in the present scheme of single-particle dynamics, quite finite orders
of derivatives are adequate both for Poincaré covariance and for interaction, reflected in the
twisting and turning of the single worldline. The full complement of conservative laws (linear
momentum, angular momentum, energy, uniform centre-of-mass motion) may be brought
forth without difficulty [4]; they give Poisson brackets in conformity with the Lie algebra of
the Poincaré group, and worldline invariance is obtained.

2. The HOOP oscillator

Starting with the non-relativistic equations of motion for a pair of particles coupled by a spring,

m1r̈1 = −k(r1 − r2)

m2r̈2 = k(r1 − r2)

one may decouple directly by solving the first equation for r2 and introducing it into the second
one, giving the fourth-order HOOP equation

m1m2

k
r
(4)
1 + (m1 +m2)r̈1 = 0. (1)
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Dropping the subscript 1 and writing r1 as r, ṙ1, as v and r̈1 as a, a Lagrangian, giving
equation (1) as Euler–Lagrange equations, is

L0 = −1

2

µ

c2
v2 + λa2 (2)

where, with relativistic forethought,

µ ≡ (m1 +m2)c
2 λ ≡ 1

2

m1m2

k
.

Going now to Ostrogradsky’s Hamiltonian [5] scheme, we introduce the canonical
coordinates

q = r Q = v

and their conjugate momenta

p = ∂L0

∂v
− d

dt

∂L0

∂a
= − µ

c2
v − 2λȧ

P = ∂L0

∂a
= 2λa

to yield the Hamiltonian

H0 = p · v + P · a − L

wherein a = a(P ) = P /2λ. Thus

H0 = p · Q +
1

4λ
P 2 +

1

2

µ

c2
Q2.

Since q is cyclic, p is conserved, being in fact the ordinary linear momentum, upon returning
to primitive variables,

p = −(m1v1 +m2v2).

In the reference frame for which p = 0, the Hamiltonian is simply

H0 = 1

4λ
P 2 +

1

2

µ

c2
Q2.

The correspondence between the variables r, v,a, ȧ of the Lagrangian scheme and the
familiar conventional variables r1, v1, r2, v2 of the two-particle dynamics is readily obtained
using the primary equations of motion:

r2 = r1 +
m1

k
a1 = r +

m1

k
a

ṙ2 = v2 = v1 +
m1

k
ȧ1 = v +

m1

k
ȧ.

In a similar vein, the quartet of Ostrogradsky variables q,p,Q,P may be elaborated
in terms of the primitive quartet r1, ṙ1, r̈1, ˙̇ṙ1 through use of the Hamiltonian equations of
motion:

r1 ≡ q

ṙ1 = q̇ = ∂H0

∂p
= Q

r̈1 = q̈ = Q̇ = ∂H0

∂P
= 1

2λ
P

˙̇ṙ1 = ˙̇q̇ = − 1

2λ

∂H0

∂Q
= − 1

2λ

(
p +

µ

c2
Q

)
.
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A similar relativistic calculation using the relativistic H below may also be performed,
while the recovery of the motion of particle 2 requires a detour that is under investigation.

The relativistic elevation of the foregoing is now very simple. Momentarily using the
proper time

dτ = γ−1 dt

γ ≡ (1 − β2)1/2 β ≡ v/c

we have from xi = (x1, x2, x3, x4 ≡ ict), the familiar 4-velocity

ui = dxi
dτ

or (γv, γ ic)

and 4-acceleration

wi = dui
dτ

or γ 4(γ−2a + ββ · a, iβ · a)

allowing the step-up term by term of the non-relativistic L0 dτ in equation (2) to the Lorentz
scalar

µ dτ + γwαwα dτ

so that, in coordinate time the fully relativistic

L dt = µγ−1 dt + λ[γ 3a2 + γ 5(β · a)2] dt

correctly encompasses L0 dt in the non-relativistic limit.
The Ostrogradsky machinery now produces

p = ∂L

∂v
− d

dt

∂L

∂a

P = ∂L

∂a
= 2λ(γ 3a + γ 5Q(Q · a)2)

as the canonical conjugates of the coordinates q = r and Q = v. Inverting the latter to obtain
a(P )

a = γ−3

2λ

(
P − QQ · P

c2

)

so that the relativistic Ostrogradsky Hamiltonian p · Q + P · a − L becomes

H = p · Q − µγ−1 +
1

4λ
γ−3

(
P 2 − (P · Q)2

c2

)
.

This simplifies, in the zero-momentum frame p = 0 where the angular momentum q×p+Q×P

is then just L = Q × P and (Q · P )2 = Q2P 2 − L2, to

H = −µγ−1 +
γ−5

4λ
P 2 +

γ−3

4λ2
L2. (3)

The classical motion may be explicitly worked out [7] in terms of elliptic functions.
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3. Quantization

Writing the middle term in equation (3) as f (Q)P 2 and using standard canonical commutation
rules (Pi ,Qj ) = ih̄δij , we are faced at once with the ancient (and still unresolved) problem of
quantal operator ordering. Two obvious choices of ordering giving Hermitian operators are

P · fP and 1
2 (fP 2 + P 2f )

so a quite general spectrum of possibilities for the quantal representation of fP 2 is the
superposition

α(P · fP 2) + 1
2β(fP 2 + P 2f ) (α + β = 1)

or

fP 2 − ih̄(∇Qf ) · P − 1
2βh̄

2∇2
Q.

This encompasses several standard ordering rules: the symmetrization, Born–Jordan and
Weyl–McCoy rules correspond to β = 1, 2

3 , 1
2 , respectively. Below, based on numerical

studies, the choiceβ = 2 will be used, since the sensitivity of the eigenvalues of the Hamiltonian
operator upon increments of the precise value of β appears to be reduced for β in the vicinity
of β = 2.

Using spherical polar coordinates in the velocity space R,

|Q| = R P = −ih̄∇R

γ = (1 − R2/c2)−1/2

∇2
R = 1

R2

∂

∂R
R2 ∂

∂R
R2 +

1

R2

(
−L2

h̄2

)
the Hamiltonian operator becomes

H = −µγ−1 +
1

4λ

[
5
h̄2

c2
γ−3R

∂

∂R
− h̄2γ−5∇2 +

15h̄2

2c2
βγ−1

(
1 − 2

R2

c2

)
+

1

c2
γ−3L2

]
.

It is to be emphasized that the radial ‘coordinate’ R is an Ostrogradsky coordinate
representing not position but velocity: the wave equation H! = E! is a wave equation
in velocity space: the domain of R/c is 0 � R/c � 1.

Separating radial from angular coordinates in the usual way yields

! = F(R)Ym$ (θ, φ) L2Ym$ = $($ + 1)h̄2Ym$

with the radial function F satisfying, after inserting γ (R) explicitly, taking units with c = 1
and reducing and rearranging

(1 − R2)5/2
d2F

dR2
+

[
2

R
(1 − R2)5/2 − 5R(1 − R2)3/2

]
dF

dR

−
[
$($ + 1)

(1 − R2)3/2

R2
+

15

2
β(1 − 2R2)(1 − R2)1/2

− 2

W 2
(1 − R2)1/2 − 2

W
ε

]
F = 0 (4)

where
4λc2µ

h̄2 ≡ 2

W 2

4λc2µ

h̄2 E ≡ 2

W 2
ε
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with ε = E/h̄ω0, ω0 = (k/m)1/2, m = m1m2/(m1 +m2).
It is of interest to compare this result with the non-relativistic one. Using H0 above

(with p = 0) one obtains for the radial Schrödinger equation in the Ostrogradsky (velocity)
coordinate R (with c = 1),[

1

R2

d

dR
R2 d

dR
− $($ + 1)

R2
− 1

W 2
R2 +

2

W
ε0

]
F0 = 0.

By rescaling according to

ξ = R/
√
W

this is [
1

ξ 2

d

dξ
ξ 2 d

dξ
− $($ + 1)

ξ 2
− ξ 2 + 2ε0

]
F0 = 0

with the well known solutions in Laguerre functions

F0 =
√

2

ξ
L
$+1/2
k (ξ 2)

ε0 = n + 3
2 (n = 0, 1, 2, . . .)

k = 1
2 (n− $).

Since it is clear that equation (4) is out of reach analytically in terms of known functions,
numerical integration is necessary. First, transform away the first derivative using the
substitution

U(R) = R(1 − R2)5/4F(R)

to give

U ′′ − φ(R)U = − 2

W
ε

1

(1 − R2)5/2
U

φ ≡ $($ + 1)

R2(1 − R2)
+

15

2
β

1 − 2R2

(1 − R2)2
− 2/W 2

(1 − R2)2
− 15

2

1

(1 − R2)
+

5

4

R2

(1 − R2
.

Now discretize, following a well known integration method [8], by placing R at the
lattice points R0, R1, . . . Rj , . . . (Rj = jh) with U(Rj ) ≡ Uj and φ(Rj ) ≡ φj , while U ′′ is
approximated as

U ′′ ≈ Uj+1 − 2Uj + Uj−1

h2
.

Thereupon

−Uj+1 + (2 + h2φj )Uj − Uj+1 = 1

(1 − R2
j )

5/2

2h2

W
εUj

so that we have a system of linear equations in U0, U1, U2, . . . , and an eigenvalue problem
therein, which may be handled by well known techniques [9].

Representative solutions are given in figures 3–6, where relativistic (R) and non-relativistic
(NR) radial functions F(ξ) and F0(ξ) are shown up to n = 3, for β = 2,W = 0.1 (note
that very small W 
 1 corresponds to the nearly non-relativistic limit, while W � 1
corresponds to the highly relativistic case). For W = 0.1 the situation is borderline non-
relativistic, with eigenfunctions that are crudely comparable to the non-relativistic case yet
readily distinguishable from it.
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Figure 3. Comparing relativistic and non-relativistic radial wavefunctions: n = 0.

Figure 4. Comparing relativistic and non-relativistic radial wavefunctions: n = 1.

Figure 5. Comparing relativistic and non-relativistic radial wavefunctions: n = 2.
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Figure 6. Comparing relativistic and non-relativistic radial wavefunctions: n = 3.

4. Conclusion

We may summarize as follows. In a procedure that is completely non-perturbative, the
relativistic oscillator has been presented as a single-particle equation of motion of higher
(fourth) order, which generalizes the non-relativistic pair of equations of motion of two
particles coupled by a spring. The higher-order dynamics has been Hamiltonized according
to Ostrogradsky’s classical method and, in the centre-of-momentum frame, a Schrödinger
equation in velocity space has been produced and analysed fully, down to a numerical solution
of the appropriate radial wave equation. This illustrates, in concrete detail, the HOOP approach
to the many-particle relativistic problem.
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